Refine your search:     
Report No.
 - 
Search Results: Records 1-19 displayed on this page of 19
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Overview of accident-tolerant fuel R&D program in Japan

Yamashita, Shinichiro; Ioka, Ikuo; Nemoto, Yoshiyuki; Kawanishi, Tomohiro; Kurata, Masaki; Kaji, Yoshiyuki; Fukahori, Tokio; Nozawa, Takashi*; Sato, Daiki*; Murakami, Nozomu*; et al.

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.206 - 216, 2019/09

After the nuclear accident at Fukushima Daiichi Power Plant, research and development (R&D) program for establishing technical basis of accident-tolerant fuel (ATF) started from 2015 in Japan. Since then, both experimental and analytical studies necessary for designing a new light water reactor (LWR) core with ATF candidate materials are being conducted within the Japanese ATF R&D Consortium for implementing ATF to the existing LWRs, accompanying with various technological developments required. Until now, we have accumulated experimental data of the candidate materials by out-of-pile tests, developed fuel evaluation codes to apply to the ATF candidate materials, and evaluated fuel behavior simulating operational and accidental conditions by the developed codes. In this paper, the R&D progresses of the ATF candidate materials considered in Japan are reviewed based on the information available such as proceedings of international conference and academic papers, providing an overview of ATF program in Japan.

Journal Articles

Technical basis of accident tolerant fuel updated under a Japanese R&D project

Yamashita, Shinichiro; Nagase, Fumihisa; Kurata, Masaki; Nozawa, Takashi; Watanabe, Seiichi*; Kirimura, Kazuki*; Kakiuchi, Kazuo*; Kondo, Takao*; Sakamoto, Kan*; Kusagaya, Kazuyuki*; et al.

Proceedings of 2017 Water Reactor Fuel Performance Meeting (WRFPM 2017) (USB Flash Drive), 10 Pages, 2017/09

In Japan, the research and development (R&D) project on accident tolerant fuel and other components (ATFs) of light water reactors (LWRs) has been initiated in 2015 for establishing technical basis of ATFs. The Japan Atomic Energy Agency (JAEA) has coordinated and carried out this ATF R&D project in cooperation with power plant providers, fuel venders and universities for making the best use of the experiences, knowledges in commercial uses of zirconium-base alloys (Zircaloy) in LWRs. ATF candidate materials under consideration in the project are FeCrAl steel strengthened by dispersion of fine oxide particles(FeCrAl-ODS) and silicon carbide (SiC) composite, and are expecting to endure severe accident conditions in the reactor core for a longer period of time than the Zircaloy while maintaining or improving fuel performance during normal operations. In this paper, the progresses of the R&D project are reported.

Journal Articles

Effect of implanted helium on thermal diffusivities of SiC/SiC composites

Taguchi, Tomitsugu; Igawa, Naoki; Jitsukawa, Shiro; Shimura, Kenichiro

Nuclear Instruments and Methods in Physics Research B, 242(1-2), p.469 - 472, 2006/01

 Times Cited Count:3 Percentile:28.19(Instruments & Instrumentation)

SiC/SiC composites are one of the candidate materials for first wall in a fusion reactor because of their high strength at high temperature and low residual radioactivity after irradiation. In the fusion reactor, these materials are required to have high thermal diffusivity for heat exchange and reducing the thermal shock. Under fusion conditions, helium (He) and hydrogen (H) are produced in SiC. In this study, the effect of He ions implantation on the thermal diffusivities of SiC and SiC/SiC composite were investigated. In the results, the thermal diffusivities of SiC and SiC/SiC composites decreased after He ions implantation. However, the thermal diffusivities of SiC and SiC/SiC composites hardly reduced in the operation temperature of fusion reactor. The thermal diffusivities of He implanted specimens were partly recovered by annealing. The defect concentration induced by He implantation, X$$_{irradiation}$$, in SiC/SiC composites was estimated. The X$$_{irradiation}$$ rapidly decreased around 500 $$^{circ}$$C. The reason is that the He release from SiC starts at 500 $$^{circ}$$C.

JAEA Reports

An Irradiation test of heat-resistant ceramic composite materials, 2; Interim report on post-irradiation examinations of the second and third preliminary test, 98M-41A, 99M-30A

Baba, Shinichi; Nemoto, Makoto*; Sozawa, Shizuo; Yamaji, Masatoshi*; Ishihara, Masahiro; Sawa, Kazuhiro

JAERI-Tech 2005-055, 157 Pages, 2005/09

JAERI-Tech-2005-055.pdf:19.06MB

The Japan Atomic Energy Research Institute (JAERI) has been carrying out the research on radiation damage mechanism of heat-resistant ceramics composite materials, as one of the subjects of the innovative basic research on high temperature engineering using the High Temperature Engineering Test Reactor (HTTR). A series of preliminary irradiation tests is being made using the Japan Materials Testing Reactor (JMTR). The present report describes results of post-irradiation examinations so far on specimens irradiated in the second and third capsule, designated 98M-41A and 99M-30A, to fast neutron fluences of 1.0$$times$$10$$^{25}$$m$$^{-2}$$(E$$>$$1MeV) at temperatures of 973K-1173K and 1273K-1473K. The PIE were conducted as the fundamental statistics index of the diametral dimensions for irradiated specimen, irradiation induced dimensional change rate and thermal expansion rate.

Journal Articles

Synergistic effects of implanted helium and hydrogen and the effect of irradiation temperature on the microstructure of SiC/SiC composites

Taguchi, Tomitsugu; Igawa, Naoki; Miwa, Shuhei*; Wakai, Eiichi; Jitsukawa, Shiro; Snead, L. L.*; Hasegawa, Akira*

Journal of Nuclear Materials, 335(3), p.508 - 514, 2004/12

 Times Cited Count:37 Percentile:89.67(Materials Science, Multidisciplinary)

The microstructure of near-stoichiometric fiber SiC/SiC composites implanted with He and H ions was studied at implantation temperatures of 1000 and 1300 $$^{circ}$$C. The average size of He bubbles in the CVI SiC matrix decreases with increasing concentration of implanted H ions. Moreover, the number density of He bubbles increases with increasing irradiation temperature and amount of implanted H. At the irradiation temperature of 1000 $$^{circ}$$C, He bubbles were mainly formed at grain boundary within the matrix. On the other hand, He bubbles were formed both at grain boundaries and within grains at the irradiation temperature of 1300 $$^{circ}$$C. The average size of He bubbles at grain boundaries was much larger than within the grain. The average size of He bubbles in the fiber was smaller than that in the matrix in all cases.

Journal Articles

Fabrication of advanced SiC fiber/F-CVI SiC matrix composites with SiC/C multi-layer interphase

Taguchi, Tomitsugu; Nozawa, Takashi*; Igawa, Naoki; Kato, Yutai*; Jitsukawa, Shiro; Koyama, Akira*; Hinoki, Tatsuya*; Snead, L. L.*

Journal of Nuclear Materials, 329-333(Part1), p.572 - 576, 2004/08

 Times Cited Count:46 Percentile:92.89(Materials Science, Multidisciplinary)

The SiC/SiC composite with SiC/C multi-layer interphase coated on advanced SiC fibers was fabricated by the forced thermal-gradient chemical vapor infiltration (F-CVI) process for improvement in mechanical properties. The SEM and TEM observation verified that SiC/C multi-layer interphase was formed on SiC fibers. The both flexural and tensile strengths of SiC/SiC composite with SiC/C multi-layer interphase were approximately 10 % higher than that with single carbon interphase. The SEM observation on the fracture surface of the composite with SiC/C multi-layer reveals that cylindrical steps around the fiber were formed. The several crack deflections occurred within SiC/C multi-layer interphase. The SiC/C multi-layer applied in this study operated efficiently to improve the mechanical properties.

Journal Articles

Fusion power reactor designs adopting SiC/SiC composite as the structural material

Nishio, Satoshi

Purazuma, Kaku Yugo Gakkai-Shi, 80(1), p.14 - 17, 2004/01

SiC/SiC composite is a promising structural material candidate for fusion power cores and has been considered internationally in several power plant studies. It offers safety advantages arising from its low induced radioactivity and afterheat, and the possibility of high efficiency of energy conversion through high temperature operation. The latest SiC/SiC-based power core design studies are summarized, and the key SiC/SiC parameters affecting the performance of power core components are highlighted.

Journal Articles

Development of SiC/SiC composite from precursor polymer by radiation application

Sugimoto, Masaki; Morita, Yosuke; Tanaka, Shigeru; Seguchi, Tadao; Ito, Masayoshi*; Okamura, Kiyohito*

IAEA-SM-365/7, p.35 - 40, 2003/09

no abstracts in English

Journal Articles

Irradiation effects on thermal expansion of SiC/SiC composite materials

Ishihara, Masahiro; Baba, Shinichi; Hoshiya, Taiji; Shikama, Tatsuo*

Journal of Nuclear Materials, 307-311(Part2), p.1168 - 1172, 2002/12

 Times Cited Count:5 Percentile:34.58(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

Optimizing the fabrication process for excellent mechanical properties in stoichiometric SiC fiber/FCVI SiC matrix composites

Taguchi, Tomitsugu; Igawa, Naoki; Jitsukawa, Shiro; Nozawa, Takashi*; Kato, Yudai*; Koyama, Akira*; Snead, L. L.*; McLaughlin, J. C.*

Advanced SiC/SiC Ceramic Composites: Developments and Applications in Energy Systems; Ceramic Transactions Vol. 144, p.69 - 76, 2002/00

Process optimization for Forced-thermal gradient Chemical Vapor Infiltration (FCVI) fabrication of 75 mm diameter size SiC composites with advanced SiC fibers; Hi-Nicalon Type S and Tyranno SA, was carried out. The SiC/SiC composites fabricated by FCVI exhibited significant reduction in porosity (15.1%) and more uniform pore distribution by decreasing the MTS and H$$_{2}$$ gases flow rates in the latter part of the FCVI process. The tensile strength of the both composites using Hi-Nicalon Type S or Tyranno SA fibers was slightly increased with increased thickness of carbon interphase in the range of 75-300 nm. In order to perform the comparative testing required to directly compare the thermomechanical property changes following neutron irradiation, larger composites with uniform microstructural property are required. From the results of process optimization for fabrication of 75 mm diameter size FCVI SiC/SiC composites, the definitive purpose in this study is the fabrication of the 300 mm diameter size SiC/SiC composite with the uniform microstructural properties.

Journal Articles

Present status of the innovative basic research on high-temperature engineering using the HTTR

Sudo, Yukio; Hoshiya, Taiji; Ishihara, Masahiro; Shibata, Taiju; Ishino, Shiori*; Terai, Takayuki*; Oku, Tatsuo*; Motohashi, Yoshinobu*; Tagawa, Seiichi*; Katsumura, Yosuke*; et al.

Proceedings of OECD/NEA 2nd Information Exchange Meeting on Basic Studies in the Field of High-temperature Engineering, p.39 - 50, 2001/00

no abstracts in English

Journal Articles

Thermal stress analyses in first wall subjected to high heat flux from fusion plasma

Kurihara, Ryoichi; Nishio, Satoshi; Konishi, Satoshi

Thermal Stresses 2001, p.81 - 84, 2001/00

no abstracts in English

Journal Articles

Prototype tokamak fusion power reactor based on SiC/SiC composite material, focussing on easy maintenance

Nishio, Satoshi; Ueda, Shuzo; Kurihara, Ryoichi; Kuroda, Toshimasa*; Miura, H.*; Sako, Kiyoshi*; Takase, Kazuyuki; Seki, Yasushi; Adachi, Junichi*; Yamazaki, Seiichiro*; et al.

Fusion Engineering and Design, 48(3-4), p.271 - 279, 2000/09

 Times Cited Count:17 Percentile:72(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Neutron streaming evaluation for the DREAM fusion power reactor

Seki, Yasushi; Mori, Seiji*; Nishio, Satoshi; Ueda, Shuzo; Kurihara, Ryoichi

Journal of Nuclear Science and Technology, 37(Suppl.1), p.268 - 275, 2000/03

no abstracts in English

Journal Articles

Development of SiC fiber-reinforced SiC composites by radiation-cured preceramic polymer

Sugimoto, Masaki; Morita, Yosuke; Seguchi, Tadao; *

Key Engineering Materials, 164-165, p.11 - 14, 1999/00

no abstracts in English

Journal Articles

Effect of activation cross section change on the shallow land burial fraction of low activation materials for fusion reactors

Seki, Yasushi; Aoki, Isao; Ueda, Shuzo; Nishio, Satoshi; Kurihara, Ryoichi; Tabara, Takashi*

Fusion Technology, 34(3), p.353 - 357, 1998/11

no abstracts in English

Oral presentation

Rupture properties of advanced SiC/SiC composites and development of strain measurement for evaluating creep properties

Ozawa, Kazumi; Nozawa, Takashi; Tanigawa, Hiroyasu

no journal, , 

no abstracts in English

Oral presentation

R&D program for Establishing Technical Basis of Accident Tolerant Fuel Materials in Japan

Yamashita, Shinichiro; Ioka, Ikuo; Nemoto, Yoshiyuki; Kawanishi, Tomohiro; Kaji, Yoshiyuki; Fukahori, Tokio; Nozawa, Takashi*; Watanabe, Seiichi*; Murakami, Nozomu*; Sato, Hisaki*; et al.

no journal, , 

Oral presentation

Current status and future prospect of light water reactor accident-tolerant fuels R&D in Japan

Yamashita, Shinichiro; Ioka, Ikuo; Nemoto, Yoshiyuki; Kawanishi, Tomohiro; Kurata, Masaki; Kaji, Yoshiyuki; Fukahori, Tokio; Nozawa, Takashi*; Sato, Daiki*; Murakami, Nozomu*; et al.

no journal, , 

Research and development (R&D) program for establishing technical basis of ATFs for light water reactor (LWR) started in 2015. Since then the R&D is being conducted in cooperation with power plant providers, fuel venders, research institutes and universities for making the most use of the experiences in R&D, practical design, and evaluations of fuels and cores of commercial LWRs. Among currently explored ATF candidate materials in the program, silicon carbide composite reinforced by SiC fiber (SiC/SiC) and FeCrAl steel strengthened by dispersion of fine oxide particles (FeCrAl-ODS) offer several attractive features including the remarkable high temperature capabilities and the slow kinetics of steam oxidation reactions. This presentation will give an overview of the progress in ATF development and review the current status of data availability and integrity for the properties and behaviors of ATF candidate materials, followed by discussion on the primary differences from zirconium alloy in the behaviors in the severe accident scenarios. Finally, subjects to be solved for practical use of ATF will be summarized.

19 (Records 1-19 displayed on this page)
  • 1